Nitrogen flows in the gut of dairy goats: quantitative and qualitative aspects

F. LAURENT, G. BLANCHART, J. BRUN-BELLUT

E.N.S.A.I.A.-INRA, Sciences Animales, 2, avenue de la Forêt de Haye, 54500 Vandœuvre (France)

Nitrogen flows were measured in the gut of two lactating goats (2 kg milk per day) fitted with a simple rumen and a duodenal cannula and housed in metabolic crates. They were fed ad libitum in two equal meals during 30 days for each diet. The diets consisted of green roughage (ray-grass = RGA) and concentrates or maize silage (M) or a mixed diet (hay, dried beet pulps, concentrates = HPC). The OM, CP and CF contents (% DM) were 83.9, 92.8, 94.9 and 14.0, 12.0, 7.8 and 30.3, 24.5, 22.7 respectively for RGA, M and HPC diets. PDIN and PDIE values were 104 and 105, 52 and 83, 107 and 115 g/kg DM respectively for RGA, M and HPC diets.

Digesta flows were estimated on the 21st day using PEG (30 g/day) and chromic oxyde (2 g/day) as markers. Microbial fraction was calculated after determining RNA level in duodenal digesta and NRNA/totalN ratio of bacteria isolated by differential centrifugation of duodenal content.

The amount of ingested dry matter was 1 777, 1 538, and 771 g respectively for HPC, RGA and M diets. With HPC and RGA diets the amounts of ingested nitrogen (34.9 and 39.1 g/day) was higher than the nitrogen entering the duodenum (22 and 30 g/day). Net nitrogen recycling into the rumen seemed to be very important (+ 15 g/day) with M diet.

Microbial nitrogen/NAN ratio in the duodenum varied between 50 % (M), 68 % (HPC) and 80 % (RGA). The mean flow of NRNA (2.4, 2.3, and 1.6 g/day) for HPC, RGA and M was 1.8 fold higher than the ingested amount showing net synthesis of RNA in the rumen. Microbial efficiency synthesis (g microbial CP/kg DOM) varied between 109 for HPC, 159 for M, and 161.
Feed intake, digestibility and nitrogen retention in lactating dairy goats fed increments of urea and fish meal

J.E. LINDBERG, P. CISZUK

Swedish University of Agricultural Sciences, Department of Animal Nutrition and Management, Kungsängens gård, S-755 90 Uppsala (Sweden)

Balance measurements were made in dairy goats of the Swedish Landrace breed. A total of 14 goats with an average live weight of 49 kg were used during the 3 experimental years.

Experimental diets were composed of 400 g · kg⁻¹ hay and 600 g · kg⁻¹ concentrate mixture on feed basis. The concentrate mixtures were not supplemented or supplemented with increasing amounts of urea (0.9, 1.8, 2.7 and 3.5 %) and fish meal (3.9, 7.9, 11.7 and 15.8 %).

A standard diet (344 g · kg⁻¹ hay and 656 g · kg⁻¹ concentrate mixture) was fed after parturition and between experimental periods as a reference diet to establish the production capacity of each goat. The standard concentrate was composed of barley, oats, molasses-beet pulp, wheat bran and soyabean meal.

All diets were fed ad libitum. Collections were made for two weeks after an adaptation period of at least three weeks to experimental diets and two weeks to the standard diet. Buffer-soluble crude protein was analysed with a mineral buffer adjusted to pH 6.7-6.9 and rumen degradability of crude protein was determined with nylon bags with 20 μm pore size.

There was a gradual increase in buffer-soluble crude protein (BSCP) and rumen degradable crude protein (EPD) in concentrates with added urea. The opposite was true in concentrates with added fish meal. EPD and BSCP in concentrate mixtures were linearly (P < 0.001) related (r² = 0.72).

The average feed intake was 86.4 g/kg P 0.75 (SD = 4.7). Feed intake showed large between animal variation, mostly marked at low and at high crude protein content in the diet. The relative feed intake (in % of intake on the standard diet) decreased significantly (P < 0.01) with increasing urea and fish meal supplementation. However, milk protein production was well maintained on the fish meal diets.

Organic matter digestibility was similar on all diets (73 %, SD = 0.7). Crude fibre (CF) digestibility varied between diets, but was significantly (P < 0.001) related to the amount of BSCP in feed organic matter in unsupplemented and fish meal supplemented diets. Significant (P < 0.05) individual differences in CF digestibility were also noticed.

The nitrogen balances (total N retention - milk N) were not significantly influenced by the diets fed and was on average 1.9 g N per day (SD = 0.6). The milk N output was on average 12.4 g/d (SD = 1.5) on the experimental diets. Increasing supplementation of urea, above the...