Preliminary study of non-methanogenic hydrogenotrophic microflora in the rumen of newborn lambs

J Doré, F Rieu-Lesme, G Fonty, P Gouet

INRA, CR de Clermont-Ferrand-Theix, Laboratoire de Microbiologie, 63122 Saint-Genès-Champanelle, France

Hydrogen is an important intermediate in the rumen ecosystem. Produced by numerous bacterial, fungal, and protozoal species, it serves as electron donor in the reduction of CO₂ to methane. The replacement of methanogenesis, which constitutes a loss of energy for the ruminant, by alternative hydrogenotrophic pathways has been proposed as a strategy to improve utilization of feed energy by the animal. In this context, and based on previous results (Fonty et al, 1987), we have initiated an investigation of the hydrogen-utilizing microflora potentially present in the rumen prior to the establishment of methanogens.

Rumen contents were sampled from lambs kept in sterile isolators 1 day after birth and associated with the rumen microflora of 2, 3 or 5 day-old flock-reared lambs. Hydrogen utilization experiments were performed using washed rumen bacteria in anaerobic dilution solution under H_2/CO_2 or N_2/CO_2 (4:1) gas at initial overpressure of 0.5 bars. Incubations were at 39 °C on a rocking agitator. The incorporation of ¹³C- or ¹⁴C-labeled CO₂ was followed. Pure cultures of H₂-utilizing bacteria were obtained by repeated streaking, transfers and final isolation from roll-tubes using a medium (Balch *et al*, 1979) containing 30 % rumen fluid.

A production of methane from H_2/CO_2 was observed for the microflora of 2-day-old lambs or older. No methane was produced by 24 h microflora, while an H₂-dependent incorporation of CO₂ took place (table I). The ¹⁴CO₂ label was primarily incorporated in the VFA fraction (86 %). This was absent after a treatment killing all bacteria (80 °C, 30 min). ¹³C NMR showed that double labeled acetate was the major product. Strains of hydrogen-utilizing bacteria were isolated from the 24 h microflora. These were pleiotrophic and produced acetate as the main fermentation product.

We propose data supporting the hypothesis that hydrogenotrophic bacteria pre-exist in the rumen prior to the establishment of methanogens. These are able to use H_2 to reduce CO_2 to soluble products.

- Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS (1979) *Microbiol Rev* 43, 260-296
- Fonty G, Gouet Ph, Jouany JP, Senaud J (1987) J Gen Microbiol 133, 1835-1843

Table 1. Fermentation products of rumen bacterial suspensions incubated in vitro for 24	Table 1. Fe	rmentation	products of	rumen	bacterial	suspensions	incubated	in vitro) for 24 h
---	-------------	------------	-------------	-------	-----------	-------------	-----------	----------	------------

Lamb	Microflora/ lambs aged	Incubation under	Fermentation products (mM)						
			CH₄	Acetate	Propionate	Butyrate	Valerate		
A	24 h	N₂:CO₂ H₂:CO₂	0.0 0.0	28.7 49.2	8.7 10.7	2.6 3.0	1.1 1.1		
В	48 h	N₂:CO₂ H₂:CO₂	1.4 10.0	27.5 29.4	9.4 10.1	2.0 2.3	1.0 1.1		