Estimation of genetic parameters of Thoroughbred racing performance in the Czech Republic

Sonia SVOBODOVAa, Christine BLOUINb, Bertrand LANGLOISb*

a Faculty of Agronomy, Animal Breeding Institute, University of Agriculture and Forestry, Gregor Mendel, 613 00 Brno, Czech Republic
b Station de Génétique Quantitative et Appliquée, 78352 Jouy-en-Josas Cedex, France

(Received 16 July 2004; accepted 24 June 2005)

Abstract – The aim of this study was to estimate the breeding value of English Thoroughbreds in the Czech Republic using racing results from a 22-year period (1980–2001). The data include the performance of two and three-year-old horses which raced in flat races at hippodromes in the Czech Republic. The racing results (30 203) were available corresponding to 6 333 horses descending from 762 sires and 2 836 dams. Different criteria were applied in order to analyse the performance: Log of earnings per race, a normalized ranking value, distance of the race when placed, earnings and number of starts for 2, 3, 2+3 year-old horses. After preliminary studies, a year effect or a sex by year effect was finally retained. Variance component estimation using VCE software gave the following values for heritability (±standard errors): 0.14 ± 0.01 and 0.16 ± 0.01 for the Log of earnings per race and the ranking value. Repeatability was 0.31 and 0.35, respectively. The maternal environment component was evaluated as 0.02 ± 0.004 for the Log of earnings per race and 0.03 ± 0.004 for the ranking value. We found that the Log of earnings per race and the ranking value were two appropriate criteria when taking into account racing performance in selection for Thoroughbreds in the Czech Republic. The genetic correlation of the two criteria was 0.98 ± 0.003. The heritability for the distance when placed was 0.18 ± 0.01. The genetic correlation of the Log of earnings per race and distance was medium, 0.38 ± 0.05 and of the same order, 0.39 ± 0.05 for ranking value and distance. In the case where we used the Log of annual earnings and the number of starts, the heritabilities were for the Log of earnings: 0.15 ± 0.03 for two-year-olds, 0.34 ± 0.03 for three-year-olds and 0.52 ± 0.03 for two and three-year-old careers together and respectively, 0.12 ± 0.03, 0.21 ± 0.03 and 0.20 ± 0.02 for number of starts. The genetic correlations between the earnings and the number of starts were respectively: 0.26 ± 0.14, 0.33 ± 0.06 and 0.19 ± 0.07. The genetic correlation between the number of starts for two and three year-olds which was restricted to horses earning money for two consecutive years, was average: 0.35 ± 0.05 and between earnings for the same ages was high 0.80 ± 0.04.

Thoroughbred / flat races / estimation of breeding value / BLUP – animal model / Czech Republic

Résumé – Estimation de la valeur génétique du Pur Sang Anglais en République Tchèque. L’objectif de cette étude était d’estimer la valeur génétique des Pur Sang de la République Tchèque

* Corresponding author: Bertrand.Langlois@dga.jouy.inra.fr
à l’aide des résultats de course sur une période de 22 ans (1980–2001). Notre fichier comprend les performances à 2 et 3 ans des chevaux ayant couru en plat sur les hippodromes Tchèques soit 30 203 résultats de courses de 6 333 chevaux issus de 762 étalons et 2 836 poulinières. La performance a été appréhendée par différents critères, le Log du gain par course, une valeur calculée à partir du rang d’arrivée, la distance de course si le cheval est placé, le gain et le nombre de départs à 2, 3 et 2+3 ans. Après quelques analyses préliminaires un effet année ou un effet sexe par année a finalement été retenu. L’estimation des composantes de la variance par l’utilisation du programme VCE a donné les valeurs suivantes pour l’héritabilité (± écart-type) 0,14 ± 0,01 et 0,16 ± 0,01 pour le Log du gain par course et la valeur issue du classement. La répétabilité a été de 0,31 et 0,35 respectivement. La composante environnement maternel a été évaluée à 0,02 ± 0,004 pour le Log du gain par course et à 0,03 ± 0,004 pour la valeur issue du classement. Ces deux critères constituent deux moyens appropriés d’appréhender les performances pour la sélection des Pur sang en République Tchèque. La corrélation génétique des deux critères a été de 0,98 ± 0,03. Pour les chevaux placés uniquement, l’héritabilité de la distance de course a été estimée à 0,18 ± 0,01, sa corrélation génétique avec le Log du gain par course a été trouvée moyenne 0,38 ± 0,05 et du même ordre pour la valeur issue du classement 0,39 ± 0,05. Dans le cas ou l’on utilise le Log du gain et le nombre de départs annuels, l’héritabilité a été pour le Log du gain 0,15 ± 0,03 pour les 2 ans, 0,34 ± 0,03 pour les 3 ans, 0,32 ± 0,03 pour les 2 et 3 ans ensemble et respectivement 0,12 ± 0,03, 0,21 ± 0,03 et 0,20 ± 0,02 pour le nombre de départs. La corrélation génétique entre gains et nombre de départs a été respectivement 0,26 ± 0,14, 0,33 ± 0,06 et 0,19 ± 0,07. En se limitant aux chevaux ayant gagné deux années consécutives, la corrélation génétique entre le nombre de départs à 2 et 3 ans a été moyenne : 0,35 ± 0,05 et entre gains aux mêmes âges elle a été forte : 0,80 ± 0,04.

Pur Sang / courses plates / estimation de la valeur génétique / BLUP – modèle animal / République Tchèque

1. INTRODUCTION

The history of the Czech turf dates back to 1839, when the Czech racing company for Bohemia and Moravia was established. Under the leadership of this company, the first public race took place in Prague on 9 October 1839, but the first official racing days were held on 12 and 15 October 1839. In 1906, the first hippodrome Velka Chuchle was opened on the outskirts of the capital city of Prague. Velka Chuchle became the central place for gallop races. The first Czechoslovak Derby was held here in 1921 and was called the “Prix du Czechoslovak Jockey Club”. It was a sign of inclination of the new republic to France after World War I, when the Derby was called the “Prix du Jockey Club”. From 1922 the Derby was called the Czechoslovak Derby and at present it is the Czech Derby. World War II had a very bad effect on the turf in the Czech country. In 1948 the Jockey Club was abolished and re-opened after 1989 [1]. At present, a number of important Czech and international races are held in the Czech Republic. The Czech turf has its place in the breeding and selection of Thoroughbreds in Europe.

The performance of Thoroughbred horses results from a long-term selection for maximum gallop speed and now for the ability to win in races [9]. The selection of Thoroughbred horses is implemented using a system of races acting as a performance test. The results of these races are used for a comparison of inter-generation and intra-generation performances of Thoroughbreds [10].

The criteria used to estimate the racing ability are timing, handicap weight, handicap lengths as for the performance rate [6, 11] and earnings [5, 8, 9]. The heritability of the criteria of handicap weight, performance rate and earnings (0,30 < h² < 0,40) is substantially higher than that of the parameters derived from timing (h² < 0,20) [6, 7]. Misar, Jiskrova, Pribyl [10] used the criterion of General handicap (Gh – weight in kg) and an index of performance based on earnings (IDP – earnings divided by the
mean value of horses of the same year, age,
sex category) for the estimation of the breed-
ing value, because these performance char-
acteristics have high or medium coefficients
of heritability in the contrary to racing
times whose heritability and repeatability
are low [4].

In the present study of the results of Czech
races for breeding purposes, for the estima-
tion of breeding value we used the criteria
of earnings at different levels: per race, per
year and for the career, rank at finish in the
race, distance of the race when placed and
number of starts for 2, 3 and 2+3 year olds.

A number of propositions for routine
estimations of the breeding value of Thor-
oughbreds in the Czech Republic was also
explored.

2. MATERIALS AND METHODS

2.1. Setting up the database

The racing results and pedigree of the
Thoroughbreds were collected from Year-
books (1980–2001) and from Stud Books of
the Czech Republic. The results of two and
three-year-old horses were used to set up
the data base. The data consisted of 30 203
racing results of 6 333 Thoroughbreds
descending from 762 sires and 2 836 dams.
The following information was taken into
account: the name of the horse, year of
birth, sex, number of races, year of race, dis-
tance, category of race. For each horse in
each race we also recorded the rank at finish
and the corresponding earnings. The breeder,
the trainer, the rider and its category and the
category of race were also recorded; informa-
tion about the pedigree of the horses over
two generations was also included.

From this basic information some other
synthetic variables could also be calculated,
e.g. the annual earnings for two or three-
year-olds or career earnings. The same was
done for the number of starts.

2.2. Criteria for the measurement
of performance

In order to estimate the breeding value,
we used the following criteria: earnings per
race, rank at finish, distance of the race
when placed, earnings at 2, 3 and 2+3 years
and the corresponding number of starts. For
the calculations, some transformations had
to be done:

Earnings were normalized by a Log
transformation (Log of earning). At the race
level “non-real earnings” were calculated
for non-placed horses by multiplying the
earnings by 0.5 for each increasing rank as
done by Chico [4]. After normalization by
a Log transformation of these “non-real
earnings”, all the non-placed horses were
equalized and received the same value,
which is the mean of the Log of the “non-
real earnings” of non-placed horses.

Rank was transformed using a Normal
score, which can be found in statistical
tables (e.g. the Normal standard deviation
expectation of rank k out of N individuals).
As for the earnings, non-ranked horses were
equalized and received the same value.

We considered these performance crite-
ria at three levels: the level of the race, the
level of the year, and the level of the career.
The level of race was considered for the
evaluation of genetic values of the Log of
earnings, rank and distance when placed.
The level of year was considered for annual
earnings and number of starts for two and
three-year-old horses. The level of career
(2+3) was followed in all cases, when the
horses had performances for at least one
year.

For the Normal scores, on the contrary to
earnings, where the level of the race is taken
into account by the amount of money dis-
tributed, no differences are made between
the races because by construction the mean
score for a race equals zero. We therefore
introduced a pre-correction for the effect of
the race as done by Belhajyahi et al. [2].
The score S_{ij} of horse i in race j is considered
to be influenced by two effects, that of the
race \(r_j \) and that of the horse \(h_i \):

\[S_{ij} = h_i - r_j + e_{ij} \]

where \(e_{ij} \) is a random residual and \(h_i \) and \(r_j \)
are considered as fixed as it was implicitly
supposed in the original performance rate
[6, 11]. In contrast, we treated the horse
effect as random to take into account the
degree of repeatability of the horse’s per-
formance. We therefore proposed this kind
of pre-correction of data for the race level
leading to the so-called ranking value.

2.3. Genetic analysis

In the first analyses, the fixed effects
were studied using the GLM programme
package SAS [12] with or without a random
horse effect. For the estimation of the
breeding value of performance of the Thor-
oughbreds, the BLUP – animal model was
used. The following animal model was fit-
ted by using VCE and PEST software [7].

Since many assumed fixed effects were not
estimable in reality, in our genetic analysis
we only considered the effect of the year
and sex. In order to avoid problems with
interaction, a Sex by Year effect was con-
sidered. The effect of age was not really
estimable, because 2 and 3 year-olds are
running separately. We prefer therefore to
run separate analyses per age classes than a
general one on the whole data fitting a
model with an age effect. The effects of the
animal additive genetic value and that of the
specific environment to an animal and the
effect of a common environment to the
progenies of the same mare were consid-
ered as random effects. In some analysis,
the maternal effect was not used for com-
parison of results with and without this
effect. In some cases the equation for the
specific environment to an animal due to the
missing of the notion of repeatability of the
performance (horses with one performance – one number of starts, one year of racing)
also disappeared from the model.

The following equation provides the
model for the most complex situation, and
can sometimes be simplified:

\[y = X b + Z g + W m + Z p + e \]

where: \(y \) = vector of observations (Log of
earnings, ranking value, distance when
placed, number of starts); \(b \) = vector of
fixed effects (sex by year effect); \(g \) = vector
of additive genetic values (parentage); \(m \) =
vector of maternal environmental effects
(used in some analysis); \(p \) = vector of the
specific environment to an animal (in the
analysis with repeatability of perform-
ance); \(e \) = vector of errors; and \(X, Y, Z \) =
the incidence matrices.

The expectations of this linear model are:

\[
\begin{bmatrix}
y \\
g \\
m \\
p \\
e
\end{bmatrix} = \begin{bmatrix}
Xb \\
0 \\
0 \\
0 \\
0
\end{bmatrix}
\]

The variance covariance matrix is:

\[
\begin{bmatrix}
g \\
m \\
p \\
e
\end{bmatrix} \begin{bmatrix}
A\sigma^2_g & 0 & 0 & 0 \\
0 & 1\sigma^2_m & 0 & 0 \\
0 & 0 & 1\sigma^2_p & 0 \\
0 & 0 & 0 & 1\sigma^2_e
\end{bmatrix}
\]

\[
\begin{align*}
\sigma^2_g &= h^2\sigma^2_Y \\
\sigma^2_m &= \mu \sigma^2_Y \\
\sigma^2_p &= (r - \mu - h^2) \sigma^2_Y \\
\sigma^2_e &= (1 - r) \sigma^2_Y
\end{align*}
\]

where: \(A \) = relationship matrix; \(I \) = identity
matrix; \(h^2 \) = heritability; \(\mu \) = maternal envi-
ronment component of variance in %; \(r \) =
repeatability.
Table I. Variance component estimation for Log of earnings per race and for the ranking value (all starting horses).

<table>
<thead>
<tr>
<th>Traits</th>
<th>Log of earnings per race</th>
<th>Ranking value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of observations</td>
<td>28 051</td>
<td>28 051</td>
</tr>
<tr>
<td>Minimum</td>
<td>2.18</td>
<td>1.74</td>
</tr>
<tr>
<td>Maximum</td>
<td>13.85</td>
<td>2.55</td>
</tr>
<tr>
<td>Average</td>
<td>6.76</td>
<td>0.06</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>1.95</td>
<td>0.83</td>
</tr>
<tr>
<td>Number of equations</td>
<td>37 948</td>
<td>37 948</td>
</tr>
<tr>
<td>d.f. horses</td>
<td>10 423</td>
<td>10 423</td>
</tr>
<tr>
<td>d.f. maternal environment</td>
<td>2 669</td>
<td>2 669</td>
</tr>
<tr>
<td>d.f. permanent horse environment</td>
<td>5 872</td>
<td>5 872</td>
</tr>
<tr>
<td>d.f. fixed effects (years)</td>
<td>20</td>
<td>–</td>
</tr>
</tbody>
</table>

Variance component ratios (± standard-deviation) in %

<table>
<thead>
<tr>
<th></th>
<th>Log of earnings</th>
<th>Ranking value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residual</td>
<td>0.692±0.05</td>
<td>0.828±0.001</td>
</tr>
<tr>
<td>Maternal environment</td>
<td>0.023±0.04</td>
<td>0.028±0.004</td>
</tr>
<tr>
<td>Permanent horse environment</td>
<td>0.141±0.09</td>
<td>0.155±0.009</td>
</tr>
<tr>
<td>Additive genetic value = h² (diagonal) = rₜ (above the diagonal)</td>
<td>0.144±0.010</td>
<td>0.980±0.003</td>
</tr>
<tr>
<td>Repeatability</td>
<td>0.308±0.014</td>
<td>0.347±0.014</td>
</tr>
</tbody>
</table>

3. RESULTS

3.1. Estimation of fixed effects

3.1.1. Effect of age, year, sex, category of race, category of rider

In the model, we tried to assign the fixed effect of age, year, sex, category of race and category of rider. The GLM results of these fixed effects were significant in models excluding the random effect of the horse. Most of these effects including this random effect of the horse, were not estimable, with the exception of sex and year. Most of these effects which were significant in simplified models could not be incorporated in the more complete genetic model, where they were not estimable, because they con-founded with the effect of the horse.

3.1.2. Effect of sex by year (BLUE) on annual earnings

Effect of sex by year: this combination of both effects was significant in all cases (P < 0.0001), involving yearly or career criteria. For the criteria per race, year and sex effects were not significant, except the effect of year remaining alone for the Log of earnings per race. In the other cases, the sex by year combination allowed to avoid any interactions resulting mainly in yearly changes in the policy of allocating money to males and females.

3.2. Estimation of components of variance

3.2.1. Log of earnings per race and ranking value (for all starters)

Table I shows the results of evaluation of genetic parameters for Log of earning per race and the corresponding ranking value for two and three-year-old horses. The maternal environmental effect was lower than 3%. The genetic correlation of the two criteria was very high: 0.98 ± 0.003. The
repeatability for Log of earning was 0.31 ± 0.02 and for ranking value was 0.35 ± 0.02. Heritability was estimated as 0.14 ± 0.01 and 0.16 ± 0.01, respectively.

3.2.2. Log of earnings per race + ranking value + distance when placed (placed horses only)

The heritability of parameters for two and three-year-old horses was evaluated (Tab. II) without the maternal environmental effect. The genetic correlations of Log of earning and distance when placed were medium and very similar. The genetic correlation of Log of earning and distance was 0.38 ± 0.05 and 0.39 ± 0.05 for ranking value and distance respectively. However, the genetic correlation of Log of earning and ranking value was still very high: 0.95 ± 0.01. The heritability of the distance when the horse is placed is medium: 0.18 ± 0.01. The repeatability 0.28 ± 0.02 is low but allows breeding value evaluation. The selection of data not taking into account the low maternal effect did not change the repeatability of earning 0.40 ± 0.02 and ranking value 0.32 ± 0.02 very much. However, the heritability of earning was slightly increased 0.19 ± 0.01 and remained nearly the same for the ranking value 0.17 ± 0.01.

3.2.3. Log of earning per year or career and corresponding number of starts

The genetic parameters were estimated in groups of 2, 3 and 2 + 3-year-old horses. Tables III to VI show the results of these estimations. The genetic correlation between earnings and the number of starts was low and not so well estimated. Standard errors of genetic correlations were very high, from 6% to 14%. The effect of maternal environment ranged between 2% and 4% for the Log of earnings and between 1 and 6% for the number of starts. It was not very important.
In all cases, the heritability of the number of starts was lower than the heritability of
the Log of earnings. Three-year-old horses achieved the highest results; the heritability
of the Log of earnings and the heritability of the number of starts were 0.34 ± 0.03 and
0.21 ± 0.03 respectively.

3.2.4. Log of earnings and number of starts for 2 and 3-year-olds (data restricted to horses without missing values)

Table VI shows the incidence of the selection of horses having earnings both at
Table V. Variance component estimation for the Log of annual earnings and for the total number of starts for 2+3-year-olds.

<table>
<thead>
<tr>
<th>Traits</th>
<th>Log of career earnings</th>
<th>Total number of starts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of observations</td>
<td>4,358</td>
<td>4,358</td>
</tr>
<tr>
<td>Minimum</td>
<td>6.00</td>
<td>1</td>
</tr>
<tr>
<td>Maximum</td>
<td>14.43</td>
<td>18</td>
</tr>
<tr>
<td>Average</td>
<td>9.49</td>
<td>5.8</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>1.29</td>
<td>2.9</td>
</tr>
<tr>
<td>Number of observations</td>
<td>4,358</td>
<td>4,358</td>
</tr>
<tr>
<td>d.f. horses</td>
<td>8,525</td>
<td>8,525</td>
</tr>
<tr>
<td>d.f. maternal environment</td>
<td>2,186</td>
<td>2,186</td>
</tr>
<tr>
<td>d.f. fixed effects (sex × years)</td>
<td>42</td>
<td>42</td>
</tr>
<tr>
<td>Number of equations</td>
<td>21,506</td>
<td>21,506</td>
</tr>
<tr>
<td>Variance component ratios (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residual</td>
<td>0.641(±0.023)</td>
<td>0.480(±0.018)</td>
</tr>
<tr>
<td>Maternal environment</td>
<td>0.040(±0.013)</td>
<td>0.498(±0.151)</td>
</tr>
<tr>
<td>Additive genetic value = h²</td>
<td>0.319(±0.026)</td>
<td>0.191(±0.074)</td>
</tr>
<tr>
<td>(diagonal)</td>
<td></td>
<td>0.201(±0.022)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table VI. Variance component estimation for the Log of annual earnings and for the annual number for starts for two and three year-olds.

<table>
<thead>
<tr>
<th>Traits</th>
<th>Annual number of starts</th>
<th>Log of annual earnings</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2-year-olds</td>
<td>3-year-olds</td>
</tr>
<tr>
<td>Number of observations</td>
<td>3,426</td>
<td>4,031</td>
</tr>
<tr>
<td>Minimum</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Maximum</td>
<td>8</td>
<td>15</td>
</tr>
<tr>
<td>Average</td>
<td>2.8</td>
<td>3.9</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>1.5</td>
<td>2.2</td>
</tr>
<tr>
<td>Number of equations</td>
<td>24,268</td>
<td>24,268</td>
</tr>
<tr>
<td>d.f. horses</td>
<td>8,525</td>
<td>8,525</td>
</tr>
<tr>
<td>d.f. fixed effects (sex × years)</td>
<td>42</td>
<td>42</td>
</tr>
<tr>
<td>Variance component ratios (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residual</td>
<td>0.903(±0.017)</td>
<td>-0.034(±0.015)</td>
</tr>
<tr>
<td>Maternal environment</td>
<td>0.770(±0.021)</td>
<td>-0.158(±0.021)</td>
</tr>
<tr>
<td>Additive genetic value = h²</td>
<td>0.097(±0.017)</td>
<td>0.347(±0.052)</td>
</tr>
<tr>
<td>(diagonal)</td>
<td>0.230(±0.021)</td>
<td>0.183(±0.068)</td>
</tr>
<tr>
<td>Additive genetic value = r_{g}</td>
<td>0.097(±0.017)</td>
<td>0.347(±0.052)</td>
</tr>
<tr>
<td>(above the diagonal)</td>
<td>0.230(±0.021)</td>
<td>0.183(±0.068)</td>
</tr>
</tbody>
</table>
Heritability for the number of starts of the 2-year-olds ranged from 0.12 ± 0.03 (Tab. III) to 0.10 ± 0.02. For the number of starts of the 3-year-olds, it ranged from 0.22 ± 0.03 (Tab. IV) to 0.23 ± 0.02.

The heritability for the earnings of the 2-year-olds ranged from 0.15 ± 0.03 (Tab. III) to 0.21 ± 0.03.

For the earnings of the 3-year-olds it ranged from 0.34 ± 0.03 (Tab. IV) to 0.39 ± 0.02; this was not a very big variation at all. However, the estimations of the genetic correlation between earnings and number of starts at the same age were 0.26 ± 0.14 for 2-year-olds in one case (Tab. III) and 0.12 ± 0.11 in the other (Tab. VI) and respectively for 3-year-olds 0.33 ± 0.06 (Tab. IV) and 0.42 ± 0.05 (Tab. VI). The genetic correlations obtained between ages for the number of starts and earnings for 2 and 3-year-olds were respectively 0.34 ± 0.05 and 0.80 ± 0.04. They therefore appear to be moderately reliable.

4. DISCUSSION

We tried to assign the effect of year, sex, age, category of race, and category of rider to the model. Since we only had the results of 2-year-old horses running separately from 3-year-olds for comparison, it was impossible to estimate the effect of age for the same horse. This led to non significant results either for earnings per race and for the ranking value. This is logical for the ranking value but expresses similar money allocation per race for 2 and 3-year-olds in the Czech racing program. Other effects in combination with horse effects were not estimable due to too much confounding. The categories of race, of rider and “quality” of the horse were confounded, with the best horses running in the best races ridden by the best jockeys and vice versa. This led to numerous empty cells not compatible with the number of levels to be estimated. These effects were therefore not estimable but evidently they do not pose a serious problem. To make a correction for the racing level would not be appropriate. To make a correction for the category of the rider would only be interesting when different categories of riders are competing in the same category of race, which is not often the case. The only available adjustment was therefore to correct for year and sex.

The estimation of the variance components led to somewhat classical results: the maternal effect was in the range of 2–3% for Log of earnings per race and ranking value. Heritability was between 15–20% for the Log of earnings per race and the ranking value, the repeatability between 30–40%. These results did not differ very much from those obtained in Poland [13] and Germany [3] for similar criteria. The repeatability for the distance when placed was low, 28%, but the heritability, 18% was comparable to the heritability of the ranking value and earnings per race. This confirmed the general agreement about the heritability of the aptitude for the distance qualifying horses as sprinters, milers, classics or stayers and the first results obtained in Australia [14]. The estimation of breeding values for distance when placed is therefore possible and could be an information interesting for breeders. The criteria of Log of earnings and ranking value being very highly correlated (95–98%), the estimations of the genetic correlations of the distance when placed were respectively 38 and 39% with the earnings per race and the ranking value.

Comparing genetic parameters of Tables I and II for the earnings per race and the ranking value show that taking into account non-placed horses and maternal effect did not change the estimations of heritability and repeatability for the ranking value very much but led to a slight decrease of them for earnings per race. Taking into account non-placed horses as well as the maternal effect did not seem to change the genetic approach very much, particularly in the case of the ranking value, which appears
There were also no great differences between the criteria Log of earnings and ranking value. Both traits at the race level, showed sufficiently high genetic variation to allow breeding value estimation. Knowing the mean number of races in a horse’s career, which is around 6, can lead to an efficient selection on the racing ability. The genetic correlation presented clearly shows the similarity of the two criteria, so we have to choose one of them.

Since Logarithmic transformation allows to obtain a normally distributed underlying variable of performance only approximately, and because many subjective factors influence the management of earnings distribution in a practical racing program we would recommend to give priority to ranking values where these problems do not exist.

At the year or career level, we estimated the genetic parameters of Log of earnings and number of starts for 2-year-olds, 3-year-olds and 2 and 3-year-old horses together. The maternal effect was in the range of 1–6%, heritability between 15–39% for the Log of earnings and between 12–23% for the number of starts. The genetic correlation of the two criteria was in the range of 12–42%. The standard error of these estimations was sometimes high, between 5 and 14%. It is obvious that the performance of the 2-year-olds was genetically less informative than that of the 3-year-olds. However, annual earnings were highly correlated (80%). For the estimation of breeding value, the early information on 2-year-olds therefore has to be taken into account. The estimation of two variables was not the best solution because there were difficulties in the estimation of genetic correlations due to the selection of data for 2 and 3-year-olds. The total earnings at the end of 3 years of life were as heritable (32%) as the annual earnings of the 3-year-olds (34%). The use of this variable could be a good way of achieving a synthetic view. In this choice which is common by breeders on raw data, we can propose two breeding value estimations: an early one only on the 2-year-olds’ Log of annual earnings and a more synthetic one on the 2+3 Log of career earnings. These estimations will bring progress, first concerning the Logarithmic transformation of earnings and second with the advantage of the “animal model method” for the optimisation of the use of the information coming from parentage. They shall therefore improve common practices of breeders of Thoroughbreds in the Czech Republic.

But one can appreciate the difficulty with annual or career earnings in order to obtain a good evaluation of the effect of the number of starts: it depends partly on environmental factors and partly on the quality of the horse. This explains the low value of heritability (10–23%). The same earning can also be achieved with different numbers of starts: as an example, a lot of starts at a low level could earn the same money as a few starts at a high level. This will also induce non-linear relations between the number of starts and total earnings. These problems may explain the relatively weak genetic correlations obtained (19% for career earnings and number of starts).

Because the chance to have earnings also depends on the number of starts, in a thorough analysis of this kind of data we should consider a different threshold of truncation according to the number of starts. This is usually not performed. We therefore recommend, if possible, using data at the race level which avoids all these difficulties. This is proposed here in a very simple manner with the ranking value. More sophisticated treatments may be proposed, but it is not certain that they would be useful.

An information system has to be established including the criteria of earnings, rank and distance in order to inform on phenotypic and breeding values of the Czech Thoroughbred. Phenotypic values could be given at the level of each race or at the level of the racing career according to the methodology presented here for the ranking
Breeding values should be calculated each year using the BLUP – animal model methodology described. In addition to the evaluation on the ranking value, an evaluation of the distance aptitude could be added. This procedure should be given priority over the more traditional one based on total raw earnings.

5. CONCLUSION

Our results show that earnings and ranking values are two appropriate criteria to select the English Thoroughbred for racing ability in the Czech Republic. Due to their very high genetic correlation, which is more than 90%, we can recommend the choice of one of the two criteria.

Taking into account none-placed horses did not change the estimation of genetic parameters very much. The same was true when considering the maternal effect.

The addition of the parameter distance when placed appears to be a good step in the estimation of the breeding value. It provides information on the racing ability of the Thoroughbred that is interesting for breeders.

We cannot really recommend the use of the criteria, number of starts. Genetic correlation between number of starts and Log of earnings were low and the standard error too high. This parameter was not well estimated. However, since the number of starts is in a strong phenotypic relation with the annual or career earnings, it is important to find the optimal manner to take it into account when using these criteria.

The difficulty of properly taking into account the number of starts for annual or career earnings inclined us to prefer criteria at the race level where this problem does not exist. At this level the ranking criteria avoiding distribution problems and the subjectivity of earnings should be preferred.

ACKNOWLEDGEMENTS

We are grateful to the French embassy in Praha for having facilitated the stay in France and to the support by the Ministry of Education, Youth and Sports of the Czech Republic (Project No. 432100001).

REFERENCES