Effects of oxygen supplementation during the last stage of incubation on broiler performance, ascites susceptibility and some physiological traits

Umran SAHANa*, Aydın IPEKa, Ozge ALTANb, Bilgehan YILMAZ-DIKMEn

a Dept. of Animal Science, Faculty of Agriculture, University of Uludag, Gorukle, 16059-Bursa, Turkey
b Dept. of Animal Science, Faculty of Agriculture, University of Ege, Bornova, Izmir, Turkey

(Received 9 May 2005 – Accepted 15 December 2005)

Abstract – The present study was conducted to determine the possible use of supplemental oxygen treatment during the last 3 days of incubation on broiler performance, ascites susceptibility and some physiological traits. On the 18th day of incubation, fertile eggs were divided into two groups. From 18 to 21 d, the eggs were placed in two hatcher cabinets; one being a control at normal atmospheric conditions, 20.9 ± 0.5%O2 at 754 ± 2 mm Hg and the other supplemented with oxygen at 23.0 ± 0.5%. Oxygen supplementation had a significant effect on initial chick weight. At 6 weeks of age, body weight, growth rate, and feed consumption increased as partial pressure of O2 rose from 20.9 to 23.0%. Feed conversion ratio decreased with the increasing partial pressure of oxygen. In the present study, general mortality and mortality due to ascites did not differ between the groups. At 5 weeks of age, oxygen supplementation did not cause significant changes in RBC (red blood cell count), Hb (hemoglobin) and Glucose. However, PCV (hematocrit) increased significantly as the partial pressure O2 rose from 20.9 to 23.0%. There were no differences in the right ventricle, left ventricle + septum, total ventricle and RV:TV (right ventricle:total ventricle) ratio between the oxygen supplemented and control group.

Résumé – Effets d’un apport supplémentaire d’oxygène durant le dernier stade d’incubation sur les performances du poulet de chair, la formation d’ascite et quelques caractères physiologiques. La présente étude a été conduite pour évaluer l’utilisation possible d’un apport supplémentaire d’oxygène pendant les trois derniers jours d’incubation sur les performances du poulet de chair, l’apparition d’ascite et quelques paramètres physiologiques. Au 18e jour d’incubation, les œufs fertiles ont été divisés en deux groupes. De 18 à 21 jours, les œufs ont été placés dans deux éclosoirs, l’un (groupe témoin) sous conditions atmosphériques normales (20,9 ± 0,5 %O2 à 754 ± 2 mmHg) et l’autre (groupe expérimental) sous atmosphère enrichie en oxygène à 23,0 ± 0,5 %. L’apport d’oxygène a eu un effet significatif sur le poids initial des poussins. À six semaines d’âge, le poids corporel, la vitesse de croissance et la consommation d’aliments ont été accrus avec la pression partielle en oxygène la plus élevée, alors que l’indice de consommation a été diminué. La
mortalité en général et la mortalité due à l’ascite en particulier n’ont pas différé entre les groupes.
A cinq semaines d’âge, l’apport d’oxygène n’a provoqué aucun changement significatif pour la
numération des globules rouges, le taux d’hémoglobine et de glucose. Toutefois, l’hématocrite a
été sensiblement augmenté lorsque la pression partielle d’O₂ est passée de 20,9 à 23,0 %. Aucune
différence significative n’a été observée entre les deux groupes pour le poids du ventricule droit, le
poids du ventricule gauche + septum interventriculaire, le poids ventriculaire total et le rapport du
poids du ventricule droit au poids ventriculaire total (VD/VT).

1. INTRODUCTION

Modern broilers have been intensively selected over many years for rapid attain-
ment of maximal body mass and optimal feed conversion and this has resulted in
anatomical and physiological limitation of blood flow through their lungs, with de-
ficient oxygenation of their tissues as a consequence [15]. This has resulted in a
marked increase in ascites, a syndrome that causes serious losses in broilers in many
countries [28, 35].

Oxygen requirement is the most crit-
cial trigger of ascites in broilers [16].
High metabolic demands together with de-
creased availability of oxygen, may lead
to hypoxemia and ascites [15, 23, 27, 37].
Ascites susceptibility is particularly pro-
nounced during the period of rapid juve-
nile growth when the metabolic rate is very
high [7].

Although the peak incidence of ascites
occurs in the 5th or 6th week of the grow-
ing period, the aetiology of the disease may
be initiated much earlier, even during the
embryonic stage [6].

Embryonic growth can be estimated by
egg weight and O₂ consumption at certain
stages of development [10]. Rapid growth
increases the oxygen requirement, cardiac
output, and blood flow and may result in
increased pulmonary arterial pressure pri-
marily by increasing the metabolic demand
for oxygen [14, 16, 36]. Chicken embryos
grow rapidly over the last 7 d of incuba-
tion [18] resulting in a 60% increase in the
oxygen consumption during the interval
between the start of breathing and hatch-
ing [34]. Therefore, hypoxia, known to be
involved in the occurrence of the ascites
syndrome, could arise in the chick embryo
during the interval between internal pip-
ing and hatching [8]. In fact, Dewill et al.
[8] reported hypoxic conditions in the late
embryonic phase. Altan et al. [2] suggest
that oxygen supplementation from 18 to
21 d of incubation could be used as an ef-
efective means of improving hatchability of
broiler eggs. Oxygen supplementation dur-
ing incubation could also increase embryo-
onic growth rate and day old chick weight.

During the development of ascites syn-
drome, birds exhibit classic haematolog-
ic changes. For example, hematocrit, haemoglobin and red blood cell count
(RBC) all increase dramatically [21, 39].
Hernandez [9] reported that haemoglobin
and HTC were 40% higher in ascetic
broilers than nonascetic broilers housed
at 2630 m above sea level. The lack of
oxygen stimulates red blood cell prolifer-
ation to the vascular system causing an in-
crease in hematocrit [29]. An increase in
hematocrit results in higher blood viscos-
ity and leads to pulmonary hypertension,
right ventricular hypertrophy, oedema and
ascites [15, 37]. Right ventricular failure
and ascites are responses to the increased
workload by the right ventricle as a re-
sult of pulmonary hypertrophy. Hypertro-
phy of the right ventricular wall and the
ratio of the right ventricle to the total ven-
tricle mass is directly related to pulmonary
hypertension [15]. Right ventricle to to-
tal ventricle (RV:TV) ratio, haemoglobin,
hematocrit and specific clinical chemistries can be used to determine the ascites status of a bird before gross lesions are apparent [11].

The aim of the current study was to determine the effect of using supplemental oxygen treatment during the last 3 days of incubation on broiler performance, ascites susceptibility and some physiological traits.

2. MATERIALS AND METHODS

A total of 720 eggs were obtained on the same day from a commercial broiler breeder flock (Ross 308) at 40 weeks of age. The eggs were sanitised and stored at 18 °C and 75% RH for 5 days. The eggs were incubated in an incubator (Cimuka A1, Ankara, Turkey) at 37.2 °C and 54% RH for 18 days. On the 18th day of incubation, all eggs were candled and 650 fertile eggs were randomly divided into two groups. The first group was placed in a hatcher cabinet (Cimuka A2, Ankara, Turkey) at normal atmospheric condition. The percentage of oxygen was measured to be 20.9 ± 0.5% at 754 ± 2 mm Hg. The second group was placed in a hatcher cabinet (Cimuka A2, Ankara, Turkey) that was supplemented with oxygen from 18 to 21 d of incubation. The partial pressure of oxygen within this cabinet was regulated to 23.0 ± 0.5% O2 with a flow rate of approximately 5 L per min. The percentage oxygen was monitored daily with the use of an oxygen analyser (Drager Multi Warn II, Lade Modul). Both cabinets were maintained at 36.5 °C and 72% RH. Digital thermometers were used in each hatcher cabinet to verify set point temperatures.

After hatching, 270 chicks per treatment (normal atmospheric condition and supplemental O2 at hatching) were reared. The chicks were weighed individually on an electronic balance with 0.01 g before being wing-banded and placed in environmentally controlled pens. The chicks were randomly distributed into 12 pens (six replicates of 45 chicks per pen, for each group). The chicks were reared on fresh wood shavings at a depth of 8–10 cm.

The chicks were brooded at 32.5, 29 and 27 °C during weeks 1, 2, and 3 respectively. From the 3rd week, all broilers were reared at a constant temperature of 21 °C. The chicks received a standard pelleted broiler starter diet (22.0% CP and ME 12.8 MJ·kg\(^{-1}\)) between the 1st and 14th day. A grower diet (22.0% CP and 13.3 MJ·kg\(^{-1}\)) was fed between the 15th and 28th day. A finisher diet (21.0% CP and ME 13.5 MJ·kg\(^{-1}\)) was administered between the 29th and 42nd day. Feed and water were provided ad libitum. The lighting schedule was 24 h of light from days 1 to 5 and 23 h light per 1 h dark thereafter.

Individual body weights were recorded at 1, 3, 5, 6 weeks of age. Live weight gains and feed conversion ratios were calculated. Mortality and mortality due to ascites values in each pen were recorded daily. The mortality rates in the groups were determined depending on these data. All dead birds were examined for the presence of typical ascites lesions, as determined in previous publications [14,15,21], and mortalities due to ascites were recorded.

On the 5 week of the experiment, 10 chickens randomly chosen from each group were killed by deception and the hearts were removed and dissected to obtain heart weights in order to calculate the RV:TV ratio. This ratio was used as an index of pulmonary hypertension [11].

Approximately 1 mL of blood was collected for glucose concentration and hematological tests, which included red blood cell (RBC), packed cell volume (PCV) and haemoglobin (Hb). Red blood cell count (RBC), packed cell volume (PCV) and haemoglobin (Hb) concentration were determined using standard methods described by Schalm et al. [26]. Blood glucose was determined by the Glucose oxidase method (Sigma Chemical Co).
Table I. Means of body weight, growth rate, feed consumption, cumulative feed consumption and feed conversion ratio for oxygen supplemented and control groups of broilers (X± standard error of the mean).

<table>
<thead>
<tr>
<th>Variables</th>
<th>Initial Weight (g)</th>
<th>1</th>
<th>3</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body Weight (g)</td>
<td></td>
<td>****</td>
<td>**</td>
<td>*</td>
<td>**</td>
</tr>
<tr>
<td>1</td>
<td>42.10 ± 0.23</td>
<td>123.00 ± 2.30</td>
<td>751.60 ± 21.10</td>
<td>1820.30 ± 43.21</td>
<td>2185.40 ± 41.21</td>
</tr>
<tr>
<td>2</td>
<td>44.30 ± 0.20</td>
<td>135.20 ± 2.74</td>
<td>778.90 ± 21.30</td>
<td>1885.40 ± 45.80</td>
<td>2267.30 ± 50.23</td>
</tr>
<tr>
<td>Growth Rate (g)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>–</td>
<td>80.90 ± 9.33</td>
<td>628.60 ± 12.32</td>
<td>1068.70 ± 15.27</td>
<td>365.10 ± 10.12</td>
</tr>
<tr>
<td>2</td>
<td>–</td>
<td>90.90 ± 10.99</td>
<td>643.70 ± 12.96</td>
<td>1106.50 ± 17.23</td>
<td>381.90 ± 10.01</td>
</tr>
<tr>
<td>Feed Consumption (g)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>–</td>
<td>101.00 ± 5.98</td>
<td>769.40 ± 21.32</td>
<td>1968.86 ± 67.15</td>
<td>1104.00 ± 26.64</td>
</tr>
<tr>
<td>2</td>
<td>–</td>
<td>104.10 ± 6.56</td>
<td>754.35 ± 20.23</td>
<td>2038.19 ± 60.85</td>
<td>1007.80 ± 21.10</td>
</tr>
<tr>
<td>Cumulative Feed Consumption (g)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>–</td>
<td>–</td>
<td>870.40 ± 42.30</td>
<td>2839.26 ± 75.81</td>
<td>3943.26 ± 128.60</td>
</tr>
<tr>
<td>2</td>
<td>–</td>
<td>–</td>
<td>858.45 ± 40.44</td>
<td>2896.64 ± 80.63</td>
<td>3904.44 ± 123.50</td>
</tr>
<tr>
<td>Feed Conversion (g/g)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>–</td>
<td>0.82 ± 0.08</td>
<td>1.16 ± 0.08</td>
<td>1.56 ± 0.09</td>
<td>1.80 ± 0.09</td>
</tr>
<tr>
<td>2</td>
<td>–</td>
<td>0.76 ± 0.02</td>
<td>1.10 ± 0.04</td>
<td>1.53 ± 0.08</td>
<td>1.72 ± 0.07</td>
</tr>
</tbody>
</table>

Column means with common superscripts do not differ (**: P < 0.01, *: P < 0.05).
NS: not significant; 1 Control group; 2 Oxygen supplemented.
Table II. Mortality due to other reasons and mortality due to ascites of the oxygen supplemented and control groups.

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Dispersion of Total Mortality</th>
<th>Due to Ascites (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n = 10</td>
<td>n = 9</td>
</tr>
<tr>
<td></td>
<td>1–21 d</td>
<td>22–42 d</td>
</tr>
<tr>
<td>Control</td>
<td>1.48 4/270</td>
<td>0.74 2/270</td>
</tr>
<tr>
<td>O₂ Supplemented</td>
<td>0.74 2/270</td>
<td>0.74 2/270</td>
</tr>
</tbody>
</table>

NS: not significant.

The research was carried out using a randomised-plots experimental design. The SAS [25] package programme was used in the evaluation of statistical analysis. Differences between means were compared using the Duncan multiple range test and Chi-Square analysis was used in analysis of mortality ratios.

3. RESULTS

Oxygen supplementation caused a significant increase in initial chick weight (P < 0.01). The effects of oxygen supplementation on body weight (BW), growth rate and feed consumption were found to be significant at 6 weeks of age (P < 0.05; P < 0.01). BW and growth rate during the 1st, 3rd, 5th and 6th weeks increased with increasing partial pressure of O₂. At the 6th week of age, feed consumption and feed conversion ratio values of the oxygen supplemented group were significantly lower than the control group values (P < 0.01) (Tab. I).

The effects of oxygen supplementation on mortality other than ascites and mortality due to ascites are given in Table II.

Although oxygen supplementation did not have a significant effect on mortality, it is interesting to note that there was a difference of 2.59% in mortalities due to ascites between the two treatment groups. However, the reader should be aware that, numerically, this was a difference of only seven birds.

As shown in Table III, oxygen supplementation did not cause significant changes in RBC, Hb and Glucose at 5 weeks of age. However, the oxygen supplemented group exhibited higher haematocric values than the control.

At 5 weeks of age, there were no difference in right ventricle weight and the RV:TV ratio between the two groups (Tab. IV).

4. DISCUSSION

Differences in growth and energy metabolism by the chicks subjected to the different treatments may have already occurred during embryonic development [1, 17, 24]. In the present study, oxygen supplementation in the hatcher cabinet resulted in a heavier mean chick weight. This observation was in agreement with that of Christensen et al. [5] who observed that at EP 23, oxygen in a plateau state increased BW when compared with the other treatments. The results of the current study are also in agreement with those of Stock and Metcalfe [30], who stated that oxygen limits the growth of the chick embryo. Indeed, previous studies have shown that supplemental oxygen in the incubator increases the availability of oxygen, which increases the rate of conversion of egg contents into embryonic tissues [31].

Growth, particularly which of lean tissue, increases the need for O₂ consumption [4]. Maxwell et al. [22] and Witzel
Table III. Mean haematological values and blood glucose concentrations of oxygen supplemented and control groups at the 5th week (X̄ ± standard error of the mean).

<table>
<thead>
<tr>
<th>Blood Parameters</th>
<th>Control n = 10</th>
<th>Oxygen Supplemented n = 10</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glucose (mg·dL⁻¹)</td>
<td>274.00 ± 3.54</td>
<td>280.90 ± 3.54</td>
<td>NS</td>
</tr>
<tr>
<td>PCV (%)</td>
<td>32.89 ± 1.23</td>
<td>35.40 ± 1.23</td>
<td>*</td>
</tr>
<tr>
<td>Hb (g·dL⁻¹)</td>
<td>8.566 ± 0.31</td>
<td>8.784 ± 0.31</td>
<td>NS</td>
</tr>
<tr>
<td>RBC per mm³</td>
<td>2040286 ± 13</td>
<td>2132000 ± 13</td>
<td>NS</td>
</tr>
</tbody>
</table>

a, b Row means with common superscripts do not differ (*: *P < 0.05).
NS: not significant; 1 Control group; 2 Oxygen supplemented.

Table IV. Mean values of heart parameters of oxygen supplemented and control groups at the 5th week of age (X̄ ± standard error of the mean).

<table>
<thead>
<tr>
<th>Heart Parameters</th>
<th>Control n = 10</th>
<th>Oxygen Supplemented n = 10</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body Weight (g)</td>
<td>1812.25 ± 42.20</td>
<td>1870 ± 42.20</td>
<td>NS</td>
</tr>
<tr>
<td>Right Ventricle (RV) Weight (g)</td>
<td>2.04 ± 0.03</td>
<td>2.10 ± 0.03</td>
<td>NS</td>
</tr>
<tr>
<td>Left Ventricle + Septum Weight (g)</td>
<td>7.15 ± 0.09</td>
<td>7.21 ± 0.09</td>
<td>NS</td>
</tr>
<tr>
<td>Total Ventricle (TV) Weight (g)</td>
<td>9.19 ± 0.12</td>
<td>9.31 ± 0.12</td>
<td>NS</td>
</tr>
<tr>
<td>RV:TV Ratio</td>
<td>0.22 ± 0.01</td>
<td>0.23 ± 0.01</td>
<td>NS</td>
</tr>
</tbody>
</table>

NS: not significant.

et al. [38] observed reductions in BW gain when birds were reared at lower levels of atmospheric O₂. Vanhooser et al. [33] also demonstrated that low environmental O₂ severely reduced weight gain and feed efficiency of broiler chicks. Liu et al. [18] concluded that BW at 8 weeks of age was correlated with embryonic O₂ consumption on day 14–19 of incubation. Jones [12] reported an improvement in feed conversion ratio and an increase in BW of 8% when oxygen content within the hatching cabinet was maintained at 23%. In the current study, the oxygen-supplemented group had a significantly higher mean final BW, feed consumption and feed conversion ratio than the control group. Such improvements in BW and feed conversion ratio with increases in oxygen concentration suggest that broilers may be environmentally limited in their genetic capacity to convert feed to gain and to grow at optimal rates [12].

The high metabolic demands of today’s fast growing broiler, together with insufficient oxygen availability lead to hypoxia, which triggers ascites. Because hypoxia is believed to be the primary cause of ascites, its incidence is increased in circumstances that impose greater metabolic demands, particularly during the period of rapid juvenile growth when the metabolic rate is very high [7, 37]. Beker et al. [3] demonstrated an inverse relationship between oxygen consumption and ascites incidence ($R^2 = 0.96$). Beker et al. [4] found that final BW, BW gain, feed consumption and gain to feed ratio increased quadratically as the partial pressure of O₂ rose from 12% to 20.6%, while ascites heart ratio, ascites score, right ventricular mass and hematocrit increased as partial pressure of O₂ decreased. Additionally, Vander Hel et al. [32] compared 1 d old chicks exposed to 15% O₂ with control birds exposed to 20.9% O₂. Ascites was observed
in the birds exposed to low O2 at 21 d. Furthermore, the birds exposed to low levels of O2 weighed 600 g less and had a packed cell volume 50% higher than the control birds at 32 d. In the present study, oxygen supplementation during incubation did not cause significant changes in RBC, Hb and Glucose. However, PCV increased in the oxygen supplemented group at the 5th week of age. Luger et al. [20] found that ascetic broilers exhibited similar hematocrit values in control and healthy broilers. Therefore, it is possible that the association between the ascites syndrome and hematocrit, reported by Shlosberg et al. [29] may not always be evident. It may be that none of these blood parameters can predict the development of ascites at an early age.

Mortality due to ascites of this nature was 0.37% in the oxygen-supplemented group, compared with 2.96% in the control group. It must be noted that, numerically, this was only a difference of seven birds (8–1), and thus statistically, the difference was not significant. However, this observation is still important in spite of the lack of a significant difference between treatments. In the present study, mortality results were in agreement with those of Beker et al. [3, 4], Vander Hel et al. [32].

Under a wide variety of conditions, clinically healthy domestic fowl with normal pulmonary arterial pressures have RV:TV ratios ranging from 0.15 to 0.27, whereas sustained pulmonary hypertension causes RV:TV ratios to increase above 0.28 [13, 15, 19]. In this study there were no differences in RV:TV ratios between the groups at 5th weeks, and neither of the two groups exceeded this 0.27 limit. It is unclear whether or not these birds would have eventually developed full ascites.

It was concluded that oxygen supplementation from 18 to 21 d of incubation increased chick weight, final body weight, growth rate and feed efficiency of the broilers. The data from the present study, suggest that oxygen supplementation during incubation can be used to improve broiler performance.

REFERENCES

The effect of cold and dietary energy on right ventricular hypertrophy, right ventricular failure and ascites in meat type chickens, Avian Pathol. 18 (1989) 675–684.

