Free Access
Issue
Anim. Res.
Volume 54, Number 3, May-June 2005
HEALTHYPIGUT Workshop 2 - Contribution of in vitro devices in evaluating alternatives to in-feed antibiotics for young pigs and comparisons with in vivo data
Page(s) 191 - 201
DOI https://doi.org/10.1051/animres:2005011
References of Anim. Res. 54 191-201
  1. Bauer E., Williams B.A., Voigt C., Mosenthin R., Verstegen M.W.A., Impact of mammalian enzyme pretreatment on the fermentability of carbohydrate-rich feedstuffs, J. Sci. Food Agric. 83 (2003) 207-214 [CrossRef].
  2. Bauer E., Williams B.A., Voigt C., Mosenthin R., Verstegen M.W.A., Microbial activities of faeces from unweaned and adult pigs, in relation to selected fermentable carbohydrates, Anim. Sci. 73 (2001) 313-322.
  3. Clarke R.T.J., Methods for studying gut microbes, in: Clarke R.J., Bauchop T. (Eds.), Microbial ecology of the gut, Academic Press, London, 1977, pp. 1-333.
  4. Cummings J.H., Macfarlane G.T., Drasar B.D., The gut microflora and its significance, in: Whitehead R. (Ed.), Gastrointestinal Pathology, Churchill-Livingstone, Edinburgh, UK, 1989, pp. 201-219.
  5. Davies Z.S., Mason D., Brooks A.E., Griffith G.W., Merry R.J., Theodorou M.K., An automated system for measuring gas production from forages inoculated with rumen fluid and its use in determining the effect of enzymes on grass silage, Anim. Feed Sci. Technol. 83 (2000) 205-221 [CrossRef].
  6. Ewing W.N., Cole D.J.A., The Living Gut: An Introduction to Micro-organisms in Nutrition, Context, Dungannon, Ireland, 1994.
  7. Finegold S.M., Sutter V.L., Faecal flora in different populations with special reference to diet, Am. J. Clin. Nutr. 31 (1978) S116-S122 [PubMed].
  8. Florent C., Flourie B., Leblond A., Rautureau M., Bernier J.-J., Rambaud J.-C., Influence of chronic lactulose ingestion on the colonic metabolism of lactulose in man (an in vivo study), J. Clin. Invest. 75 (1985) 608-613 [PubMed].
  9. Freter R., Factors affecting the microecology of the gut, in: Fuller R. (Ed.), Probiotics - The Scientific Basis, Chapman and Hall, London, 1992, pp. 111-114.
  10. Gibson G.R., Fuller R., Aspects of in vitro and in vivo research approaches directed toward identifying probiotics and prebiotics for human use, J. Nutr. 130 (2000) 391S-395S [PubMed].
  11. Gibson G.R., Roberfroid M.B., Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics, J. Nutr. 125 (1995) 1401-1412 [PubMed].
  12. Gibson S.A.W., McFarlane C., Hay S., McFarlane G.T., Significance of microflora in proteolysis in the colon, Appl. Environ. Microbiol. 55 (1989) 679-683 [PubMed].
  13. Goldin B.R., Gorbach S.L., The relationship between diet and rat faecal enzymes implicated in colon cancer, J. Nat. Cancer Institute 57 (1976) 371-375.
  14. Grubb J.A., Dehority B.A., Variation in colony counts of total viable anaerobic rumen bacteria as influenced by media and cultural methods, Appl. Environ. Microbiol. 31 (1976) 262-267 [PubMed].
  15. Hentges D.J., Faecal flora of volunteers on controlled diets, Am. J. Clin. Nutr. 31 (1978) S123-S124 [PubMed].
  16. Hill M.J., Bacterial adaptation to lactase deficiency, in: Delmont J.C. (Ed.), Milk intolerance and rejection, Karger, Basel., 1983, pp. 22-26.
  17. Houdijk J.G.M., Hartemink R., Verstegen M.W.A., Bosch M.W., Effects of dietary non-digestible oligosaccharides on microbial characteristics of ileal chime and faeces in weaner pigs, Arch. Anim. Nutr. 56 (2002) 297-307.
  18. Hungate R.E., The Rumen and its Microbes, Academic Press, London and New York, 1966.
  19. Jensen B.B., Jørgensen H., Effect of dietary fibre on microbial activity and microbial gas production in various regions of the gastrointestinal tract of pigs, Appl. Environ. Microbiol. 60 (1994) 1897-1904 [PubMed].
  20. Juhlen-Dannfelt A., Ethanol effects of substrate utilization by the human brain, Scand. J. Cli. Lab. Inv. 37 (1977) 443-449.
  21. Konstantinov S.R., Zhu W.-Y., Williams B.A., Tamminga S., de Vos W.M., Akkermans A.D.L., Effect of fermentable carbohydrates on piglet faecal bacterial communities as revealed by denaturing gradient gel electrophoresis analysis of 16S ribosomal DNA, FEMS Microbiol. Ecol. 43 (2003) 225-235 [CrossRef].
  22. Lundqvist F., Sestoft L., Damggard S.E., Clausen J.P., Trap-Jensen J., Utilization of acetate in the human forearm during exercise after ethanol ingestion, Clin. Invest. 52 (1973) 3231-3235.
  23. Macfarlane G.T., Gibson G.R., Beatty E., Cummings J.H., Estimation of short-chain fatty acid production from protein by human intestinal bacteria based on branched-chain fatty acid measurements, FEMS Microbiol. Ecol. 101 (1992) 81-88.
  24. Macfarlane G.T., Macfarlane S., Gibson G.R., Validation of a three-stage compound continuous culture system for investigating the effect of retention time on the ecology and metabolism of bacteria in the human colonic microbiota, Microb. Ecol. 35 (1998) 180-187 [CrossRef] [PubMed].
  25. Mathers J.C., Annison E.F., Stoichiometry of polysaccharide fermentation in the large intestine, in: Samman S., Annison G. (Eds.), Dietary Fibre and Beyond-Australian Perspectives, Nutrition Society of Australia Occasional Publications, Vol. 1, 1993, pp. 123-135.
  26. Mathew A.G., Sutton A.L., Scheidt A.B., Patterson J.A., Kelly D.T. Meyerholz K.A., Effect of galactan on selected microbial populations and pH and volatile fatty acids in the ileum of the weanling pig, J. Anim. Sci. 71 (1993) 1503-1509 [PubMed].
  27. McBurney M.I., Cuff D.J., Thompson L.U., Rates of fermentation and short chain fatty acid and gas production of six starches by human faecal microbiota, J. Sci. Food Agric. 50 (1990) 79-88.
  28. Midtvedt T., in: Hattori T., Ishida Y., Maruyama Y. (Eds.), Recent Advances in Microbial Ecology, Japan Scientific Societies Press, Tokyo, 1989, pp. 515-519.
  29. Miller T.L., Wolin M.J., Fermentation by the human large intestinal microbial community in an in vitro semicontinuous culture system, Appl. Environ. Microbiol. 42 (1981) 400-407 [PubMed].
  30. Minekus M., Development and validation of a dynamic model of the gastrointestinal tract, PhD Thesis, University of Utrecht, The Netherlands, 1998.
  31. Minekus M., Smeets-Peeters M., Bernalier A., Marol-Bonnin S., Havenaar R., Marteau P., Alric M., Fonty G., Huis in 't Veld J.H.J., A computer-controlled system to simulate conditions of the large intestine with peristaltic mixing, water absorption and absorption of fermentation products, Appl. Microbiol. Biotechnol. 53 (1999) 108-114 [CrossRef] [PubMed].
  32. Ofek I., Mirelman D., Sharon N., Adherence of Escherichia coli to human mucosal cells mediated by mannose receptors, Nature 265 (1977) 623-625 [CrossRef] [PubMed].
  33. Prins R.A., Stewart C.S., Microbial interactions in the rumen, in: Proceedings of the joint RRI-INRA Rumen Microbiology Symposium, Aberdeen, Scotland, March 20-21 (1997) 1-3.
  34. Rall G.D., Wood A.J., Wescott R.B., Dommert A.R., Distribution of bacteria in feces of swine, Appl. Microbiol. 20 (1970) 789-792 [PubMed].
  35. Robinson J.A., Smolenski W.J., Ogilvie M.L., Peters J.P., In vitro total-gas, CH4, H2, volatile fatty acid, and lactate kinetics studies on luminal contents from the small intestine, cecum and colon of the pig, Appl. Environ. Microbiol. 55 (1989) 2460-2467 [PubMed].
  36. Roediger W.E.W., Utilization of nutrients by isolated epithelial cells of the rat colon, Gastroenterology 83 (1982) 424-429 [PubMed].
  37. Roediger W.E.W., Short-chain fatty acids as metabolic regulators of ion absorption in the colon, Acta Vet. Scand. 86 (1989) 116-125.
  38. Rowland I.R., Metabolic interactions in the gut, in: Fuller R. (Ed.), Probiotics - The Scientific Basis, Chapman and Hall, London, 1992, pp. 29-53.
  39. Rowland I.R., Wise A., The effect of diet on the mammalian flora and its metabolic activities, CRC Crit. Rev. Toxicol. 16 (1985) 31-103.
  40. Sharp R., Ziermer C.J., Stahl D.A., A phylogenetic assessment of bovine rumen methanogens during perturbation by acidosis, in: Proceedings of the joint RRI-INRA Rumen Microbiology Symposium, Aberdeen, Scotland, March 20-21, 1997, p. 10.
  41. Simon G.L., Gorbach S.L., Intestinal flora in health and disease, Gastroenterology 86 (1984) 174-193 [PubMed].
  42. Theodorou M.K., Williams B.A., Dhanoa M.S., McAllan A.B., France J., A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds, Anim. Feed Sci. Technol. 48 (1994) 185-197 [CrossRef].
  43. Van der Wielen P.W.J.J., Biesterveld S., Lipman L.J.A., van Knapen F., Inhibition of a glucose-limited sequenced fed-batch culture of Salmonella enterica serovar enteritidis by volatile fatty acids representative of the ceca of broiler chickens, Appl. Environ. Microbiol. 67 (2001) 1979-1982 [CrossRef] [PubMed].
  44. Vaughan E.E., Schut F., Heilig H.G.H.J., Zoetendahl E.G., de Vos W.M., Akkermans A.D.L., A molecular view of the intestinal ecosystem, Curr. Issues Intestin. Microbiol. 1 (2000) 1-12.
  45. Williams B.A., Bosch M., Houdijk J., van de Camp Y., Differences in potential fermentative capablilities of four sections of porcine digestive tract, in: Proceedings of the 48th EAAP meeting, Vienna, Austria, 1997, p. 195.
  46. Williams B.A., Van Osch L.J.M., Kwakkel R.P., Fermentation characteristics of the caecal contents of broiler chickens fed fine- and coarse particle diets, in: WPSA Spring Meeting of the UK Branch, Scarborough, UK, 1997, p. 49.
  47. Williams B.A., Tamminga S., Verstegen M.W.A., Fermentation kinetics to assess microbial activity of gastro-intestinal microflora, in: Proceedings of the symposium "Gas Production: Fermentation kinetics for feed evaluation and to assess microbial activity", Wageningen, Netherlands, 2000, pp. 97-100.
  48. Williams B.A., Verstegen M.W.A., Tamminga S., Fermentation in the large intestine of single-stomached animals and its relationship to animal health, Nutr. Res. Rev. 14 (2001) 207-227 [CrossRef].
  49. Zoetendaal E.G., Akkermans A.D.L., de Vos W.M., Temperature gradient gel electrophoresis analysis of 16S rRNA from human faecal samples reveals stable and host-specific communities of active bacteria, Appl. Environ. Microbiol. 64 (1998) 3854-3859 [PubMed].