Free Access
Issue
Anim. Res.
Volume 55, Number 5, September-October 2006
Page(s) 343 - 365
DOI https://doi.org/10.1051/animres:2006021
Published online 08 July 2006
References of  Anim. Res. 55 (2006) 343-365
  1. Alberty R.A., Calculation of standard transformed Gibbs energies and standard transformed enthalpies of biochemical reactants, Arch. Biochem. Biophys. 353 (1998) 116-130 [CrossRef] [PubMed].
  2. Baldwin R.L., Thornley J.H., Beever D.E., Metabolism of the lactating cow II. Digestive elements of a mechanistic model, J. Dairy Res. 54 (1987) 107-131 [PubMed].
  3. Bannink A., Visser H.D., Comparison of mechanistic rumen models on mathematical formulation of extramicrobial and microbial processes, J. Dairy Sci. 80 (1997) 1296-1314 [PubMed].
  4. Baran M., The fermentation of glucose in small artificial rumen, Arch. Tierernähr. 32 (1982) 779-788 [PubMed].
  5. Barry T.N., Thompson A., Armstrong D.G., Rumen fermentation studies on two contrasting diets, J. Agr. Sci. 89 (1977) 183-195.
  6. Bond D.R., Russel J.B., Relationship between intracellular phosphate, proton motive force, and rate of nongrowth energy dissipation (energy spilling) in streptococcus bovis JB1, Appl. Environ. Microb. (1998) 976-981.
  7. Counotte G.H.M., de Groot M., Prins A., Kinetic parameters of lactate dehydrogenases of some rumen bacterial species, the anaerobic ciliate Isotricha prostoma and mixed rumen microorganisms, Anton. Leeuw. 46 (1980) 363-381.
  8. Czerkawski J.W., Cheng K.J., Compartmentation in the rumen, in: Hobson P.N. (Ed.), The Rumen Microbial Ecosystem, Elsevier Applied Science, 1988, pp. 361-386.
  9. Dijkstra J., Mathematical modelling and integration of rumen fermentation processes, Ph.D. thesis, department of Animal Nutrition, Wageningen Agricultural University, 1993, 221 p.
  10. Dijkstra J., Production and absorption of volatile fatty acids in the rumen, Livest. Prod. Sci. 39 (1994) 61-69 [CrossRef].
  11. Dijkstra J., France J., A comparative evaluation of models of whole rumen function, in: Methods in Modelling Herbivore Nutrition, Paris, France, 1995, 31 p.
  12. Dijkstra J., Mills J.A.N., France J., The role of dynamic modelling in understanding the microbial contribution to rumen function, Nutr. Res. Rev. 15 (2002) 67-90.
  13. Erfle J.D., Sauer F.D., Mahadevan S., Energy metabolism in rumen microbes, in: Milligan L.P., Grovum W.L., Dobson A. (Eds.), Control of Digestion and Metabolism in Ruminants, Prentice Hall, 1986, pp. 81-99.
  14. Heijnen J.J., van Dijken J.P., In search of a thermodynamic description of biomass yields for the chemotrophic growth of microorganisms, Biotechnol. Bioeng. 39 (1992) 833-858 [CrossRef].
  15. Hino T., Russell J.B., Effect of reducing-equivalent disposal and NADH/NAD on deamination of amino acids by intact rumen microorganisms and their cell extracts, Appl. Environ. Microb. 50 (1985) 1368-1374.
  16. Kohn R.A., Dunlap T.F., Calculation of the buffering capacity of bicarbonate in the rumen and in vitro, J. Anim. Sci 76 (1998) 1702-1709 [PubMed].
  17. Kohn R.A., Boston R.C., The role of thermodynamics in controlling rumen metabolism, in: McNamara J.P., France J., Beever D.E. (Eds.), Modelling Nutrient Utilization in Farm Animals, CAB international, 2000, pp. 11-24.
  18. Laidler K.J., Physical Chemistry with Biological Applications, Addison Wesley, 1980, 587 p.
  19. Lescoat P., Sauvant D., Development of a mechanistic model for rumen digestion validated using the duodenal flux of amino acids, Reprod. Nutr. Dev. 35 (1995) 45-70 [PubMed].
  20. Lovatto P.A., Sauvant D., Modeling homeorhetic and homeostatic controls of pig growth, J. Anim. Sci. 81 (2003) 683-696 [PubMed].
  21. Maaroufi C., Giger-Reverdin S., Sauvant D., Relationships between post-prandial pH drop and rumen soluble carbohydrates concentration, Reprod. Nutr. Dev. 40 (2000) 208.
  22. Marounek M., Bartos S., Kalachnyuk G.I., Dynamics of the redox potential and rH of the rumen fluid of goats, Physiol. Bohemoslov. 31 (1982) 369-374 [PubMed].
  23. Marounek M., Wallace J., Influence of culture E$_{\rm h}$ on the growth and metabolism of the rumen bacteria selenomonas ruminantium, bacteroides amylophilus, bacteroides succinogenes and streptococcus bovis in batch culture, J. Gen. Microbi. 130 (1984) 223-229.
  24. Marounek M., Roubal P., Bartos S., The redox potential, rH and pH values in the gastrointestinal tract of small ruminants, Physiol. Bohemoslov. 36 (1987) 71-74 [PubMed].
  25. Metzler D.E., Biochemistry: the chemical reactions of living cells, Academic Press, New York, 1977, 1129 p.
  26. Murphy M.R., Sauvant D., Meta-analysis of interactions between major rumen fibrolytic bacteria in solubilizing and utilizing substrates, (submitted 2004).
  27. Offner A., Sauvant D., Digestive interactions: responses to some variations of the amount of starch digestible in the rumen, in: Book of abstracts of the 53rd Annual Meeting of the EAAP No. 8, Cairo, Egypt, 1-4 September 2002, p. 57.
  28. Offner A., Sauvant D., Comparative evaluation of the Molly, CNCPS and LES rumen models, Anim. Feed Sci. Technol. 112 (2004) 107-130 [CrossRef].
  29. Offner A., Bach A., Sauvant D., Modeling starch digestion in the rumen: a comparative approach, J. Anim. Sci. 80 (Suppl. 1) (2002) p. 184
  30. Pitt R.E., Pell A.N., Modeling ruminal pH fluctuations: interactions between meal frequency and digestion rate, J. Dairy Sci. 80 (1997) 2429-2441 [PubMed].
  31. Pugh-Roberts, Professional Dynamo Plus, Reference manual, Pugh-Roberts Associates, Cambridge, MA, 1986.
  32. Russell J.B., O'Connor J.D., Fox D.G., van Soest P.J., Sniffen C.J., A net carbohydrate and protein system for evaluating cattle diets: I. Ruminal fermentation, J. Anim. Sci. 70 (1992) 3551-3561 [PubMed].
  33. Sauvant D., Dijkstra J., Mertens D., Optimisation of ruminal digestion: a modelling approach, in: Journet M., Grenet E., Farce M.-H., Thériez M., Demarquilly C. (Eds.), Recent developments in the nutrition of herbivores, INRA éditions, 1995, pp. 143-165.
  34. Sauvant D., van Milgen J., Lescoat P., Modélisation de la régulation de la stoechiométrie des fermentations ruminales par la disponibilité en ATP et en NADH2, Ann. Zootech. 44 (Suppl. 1) (1995) 167.
  35. Stewart C.S., Bryant M.P., The rumen bacteria, in: Hobson P.N. (Ed.), The Rumen Microbial Ecosystem, Elsevier Applied Science, 1988, pp. 21-76.
  36. Stull D.R., Westrum E.F., Sinke G.C., The Chemical Thermodynamics of Organic Compounds, Wiley J., NY, 1969, 865 p.
  37. Tinoco I., Sauer K., Wang J.C., Physical Chemistry: principles and applications in biological sciences, Prentice Hall, 2nd ed., 1985, 706 p.
  38. van Milgen J., Modeling biochemical aspects of energy metabolism in mammals, J. Nutr. 132 (2002) 3195-3202 [PubMed].
  39. Zilbergleyr B.J., Thermodynamic equilibrium in open chemical systems, Chem. Physics, LANL printed archives, 2000.