Articles citing this article

The Citing articles tool gives a list of articles citing the current article.
The citing articles come from EDP Sciences database, as well as other publishers participating in CrossRef Cited-by Linking Program. You can set up your personal account to receive an email alert each time this article is cited by a new article (see the menu on the right-hand side of the abstract page).

Cited article:

Genome-Wide Association Studies for Methane Production in Dairy Cattle

R. Calderón-Chagoya, J.H. Hernandez-Medrano, F.J. Ruiz-López, A. Garcia-Ruiz, V.E. Vega-Murillo, M. Montano-Bermudez, M.E. Arechavaleta-Velasco, E. Gonzalez-Padilla, E.I. Mejia-Melchor, N. Saunders, J.A. Bonilla-Cardenas, P.C. Garnsworthy and S.I. Román-Ponce
Genes 10 (12) 995 (2019)
https://doi.org/10.3390/genes10120995

The time after feeding alters methane emission kinetics in Holstein dry cows fed with various restricted diets

Yannick Blaise, Andriamasinoro Lalaina Herinaina Andriamandroso, Yves Beckers, Bernard Heinesch, Eloy Castro Muñoz, Hélène Soyeurt, Eric Froidmont, Frédéric Lebeau and Jérôme Bindelle
Livestock Science 217 99 (2018)
https://doi.org/10.1016/j.livsci.2018.07.004

In vitrofermentation of total mixed diets differing in concentrate proportion: relative effects of inocula and substrates

Amélie Serment, Sylvie Giger-Reverdin, Philippe Schmidely, et al.
Journal of the Science of Food and Agriculture 96 (1) 160 (2016)
https://doi.org/10.1002/jsfa.7076

Design, implementation and interpretation of in vitro batch culture experiments to assess enteric methane mitigation in ruminants—a review

D.R. Yáñez-Ruiz, A. Bannink, J. Dijkstra, et al.
Animal Feed Science and Technology 216 1 (2016)
https://doi.org/10.1016/j.anifeedsci.2016.03.016

Changes throughout lactation in phenotypic and genetic correlations between methane emissions and milk fatty acid contents predicted from milk mid-infrared spectra

M.-L. Vanrobays, C. Bastin, J. Vandenplas, et al.
Journal of Dairy Science 99 (9) 7247 (2016)
https://doi.org/10.3168/jds.2015-10646

The efficacy of palm oil sludge in reducing ruminal methanogenesis using rumen simulation technique

C Ugwuowo L, G Ezekwe A, O Ani A, et al.
African Journal of Biotechnology 14 (42) 22937 (2015)
https://doi.org/10.5897/AJB2015.14561

Lipid metabolism in mixtures of red clover (Trifolium repens) and perennial ryegrass (Lolium perenne) in lab scale silages and in vitro rumen incubations

G. Van Ranst, M. Vandewalle, F. Gadeyne, J. De Riek and V. Fievez
animal 7 (09) 1454 (2013)
https://doi.org/10.1017/S1751731113001080

Milk odd- and branched-chain fatty acids as biomarkers of rumen function—An update

V. Fievez, E. Colman, J.M. Castro-Montoya, I. Stefanov and B. Vlaeminck
Animal Feed Science and Technology 172 (1-2) 51 (2012)
https://doi.org/10.1016/j.anifeedsci.2011.12.008

Potential use of milk mid-infrared spectra to predict individual methane emission of dairy cows

F. Dehareng, C. Delfosse, E. Froidmont, et al.
animal 6 (10) 1694 (2012)
https://doi.org/10.1017/S1751731112000456

Methane yield from dry and lactating cows diets in the Po Plain (Italy) using anin vitrogas production technique

Mario Pirondini, Luca Malagutti, Stefania Colombini, Paola Amodeo and Gianni Matteo Crovetto
Italian Journal of Animal Science 11 (3) e61 (2012)
https://doi.org/10.4081/ijas.2012.e61

Digestibility, methane production and nitrogen balance in sheep fed ensiled or fresh mixtures of sorghum–soybean forage

R. Lima, R.F. Díaz, A. Castro and V. Fievez
Livestock Science 141 (1) 36 (2011)
https://doi.org/10.1016/j.livsci.2011.04.014

A novel method to determine simultaneously methane production during in vitro gas production using fully automated equipment

W.F. Pellikaan, W.H. Hendriks, G. Uwimana, et al.
Animal Feed Science and Technology 168 (3-4) 196 (2011)
https://doi.org/10.1016/j.anifeedsci.2011.04.096

Relationships between odd- and branched-chain fatty acid profiles in milk and calculated enteric methane proportion for lactating dairy cattle

J. Castro Montoya, A.M. Bhagwat, N. Peiren, et al.
Animal Feed Science and Technology 166-167 596 (2011)
https://doi.org/10.1016/j.anifeedsci.2011.04.080

The effect of the diet fed to donor sheep on in vitro methane production and ruminal fermentation of diets of variable composition

M.E. Martínez, M.J. Ranilla, M.L. Tejido, C. Saro and M.D. Carro
Animal Feed Science and Technology 158 (3-4) 126 (2010)
https://doi.org/10.1016/j.anifeedsci.2010.04.005

Efficiency of monolaurin in mitigating ruminal methanogenesis and modifying C-isotope fractionation when incubating diets composed of either C3 or C4 plants in a rumen simulation technique (Rusitec) system

Fenja Klevenhusen, Stefano M. Bernasconi, Thomas B. Hofstetter, et al.
British Journal of Nutrition 102 (09) 1308 (2009)
https://doi.org/10.1017/S0007114509990262

Influence of exogenous fibrolytic enzymes and fumarate on methane production, microbial growth and fermentation in Rusitec fermenters

L. A. Giraldo, M. J. Ranilla, M. L. Tejido and M. D. Carro
British Journal of Nutrition 98 (04) (2007)
https://doi.org/10.1017/S0007114507744446

Establishment and Development of Ruminal Hydrogenotrophs in Methanogen-Free Lambs

Gérard Fonty, Keith Joblin, Michel Chavarot, Remy Roux, Graham Naylor and Fabien Michallon
Applied and Environmental Microbiology 73 (20) 6391 (2007)
https://doi.org/10.1128/AEM.00181-07

Potential of carvacrol to modify in vitro rumen fermentation as compared with monensin

V. García, P. Catalá-Gregori, J. Madrid, F. Hernández, M.D. Megías and H.M. Andrade-Montemayor
Animal 1 (5) 675 (2007)
https://doi.org/10.1017/S1751731107730781

Comparison of sheep and red deer rumen fluids for assessing nutritive value of ruminant feedstuffs

Gonzalo Hervás, María J Ranilla, Ángel R Mantecón, María L Tejido and Pilar Frutos
Journal of the Science of Food and Agriculture 85 (14) 2495 (2005)
https://doi.org/10.1002/jsfa.2292

Effects of disodium fumarate on in vitro rumen microbial growth, methane production and fermentation of diets differing in their forage:concentrate ratio

R. García-Martínez, M. J. Ranilla, M. L. Tejido and M. D. Carro
British Journal of Nutrition 94 (01) 71 (2005)
https://doi.org/10.1079/BJN20051455

Propionate precursors and other metabolic intermediates as possible alternative electron acceptors to methanogenesis in ruminal fermentation in vitro

C. J. Newbold, S. López, N. Nelson, et al.
British Journal of Nutrition 94 (01) 27 (2005)
https://doi.org/10.1079/BJN20051445

DNA microarray analysis of Methanosarcina mazei Gö1 reveals adaptation to different methanogenic substrates

Raymond Hovey, Sabine Lentes, Armin Ehrenreich, et al.
Molecular Genetics and Genomics 273 (3) 225 (2005)
https://doi.org/10.1007/s00438-005-1126-9

Fish oils as potent rumen methane inhibitors and associated effects on rumen fermentation in vitro and in vivo

V Fievez, F Dohme, M Danneels, K Raes and D Demeyer
Animal Feed Science and Technology 104 (1-4) 41 (2003)
https://doi.org/10.1016/S0377-8401(02)00330-9

Influence of different concentrations of disodium fumarate on methane production and fermentation of concentrate feeds by rumen micro-organisms in vitro

M. D. Carro and M. J. Ranilla
British Journal of Nutrition 90 (03) 617 (2003)
https://doi.org/10.1079/BJN2003935

Literature survey of the influence of dietary fat composition on methane production in dairy cattle

Sylvie Giger-Reverdin, P. Morand-Fehr and G. Tran
Livestock Production Science 82 (1) 73 (2003)
https://doi.org/10.1016/S0301-6226(03)00002-2